In 1978, I was researching one of my first wildlife stories, working along the North Fork of the Flathead River in northwestern Montana, one of the wildest places in the Lower 48. A wolf was believed to be prowling into Montana from British Columbia –– an important discovery if true, because wolves had been absent from the American West for half a century and this might indicate their possible resurgence in the region. Researchers had found scat and tracks –– tantalizing evidence of at least one animal. The question was: Were wolves living there or just passing through?

Locating wolves at the time was a laborious and primitive process. I hiked trails with researchers, hands cupped to our mouths, doing our best to imitate wolf howls and hoping for a reply.

In 1979, the Border Wolf Project researchers captured their first wolf -- a female they named Kishneana, honoring the creek where she was trapped. They radio-collared her, and later that year I flew with project head Robert Ream above the purling North Fork, watching as he used a radio receiver with a handheld antenna to zero in on the faint rhythmic ticking of the collar's transmissions. Every 10 days or so, for a brief window of time, biologists flew above the North Fork to get a general idea of Kishneana's whereabouts. But that was all they could determine with the available technology; the rest of her life was a mystery.

These days, wolves have few secrets. Some are monitored constantly through GPS collars that link to orbiting satellites, reporting their locations with such high-tech precision that the animals are jokingly referred to as "robo-wolves." If an un-collared pack gets into trouble, killing cattle or llamas, federal wildlife-control agents may create a "Judas wolf": They trap and collar one of the pack's members and follow it, then kill the whole pack when the wolves reunite.

The type of radio collar that was strapped onto Kishneana in '79 is as old-fashioned now as a wall phone. It's  been surpassed by far more powerful technologies that would have seemed like science fiction a few decades ago. Today, some researchers can map wildlife 24 hours a day from the comfort of their offices, instead of, say, doing it once a week by driving dirt roads, hiking or flying.

Remote, automatically operated camera traps are ubiquitous, snapping pictures of wildlife in remote locations that can't otherwise be monitored. Just as cops use facial recognition software to help track down possible criminals, biologists now use software and cameras to identify individual animals by the patterns on their coats –– even in the irises of their eyes.

Tiny helicopters take breath samples from whales while hovering over their blowholes; aerial drones monitor orangutans; and endangered black-footed ferrets have been implanted with transponder chips that can be read by sensors buried in the dirt around their burrows, scanning their comings and goings, like groceries at the supermarket. DNA and isotopes in hair or nails are parsed in new ways to determine exactly how individual animals exploit the specific aspects of landscapes.

Even imitation wolf howls have gone high tech, thanks to the Howlbox, a kind of wilderness boom-box that sends out a pre-recorded howl. It also records the real-world answer, while doing a sonic analysis to identify the individual wolf that returned the call.

As the discovery and application of these new technologies accelerates, our understanding of wildlife increases exponentially. Despite limits imposed by politics and budgets, it's helped our efforts to protect species in an increasingly crowded, developed and fragmented world. Yet there are drawbacks. Even some biologists think that the high-tech approach to wildlife diminishes the wonder of the wild, and sacrifices the unique knowledge that comes from laborious, on-the-ground fieldwork. As the technological rush even gets into wildlife genetics in new ways, it's a good time to reflect on how much things have changed -- and where we seem to be headed.

Since I listened to the simple pinging from that 1979 wolf collar, technology's potential to improve wildlife conservation has been proven by many researchers. In the 1990s, for instance, Brian Woodbridge, a Forest Service researcher in Northern California, encountered a mystery. Many of the Swainson's hawks he studied -- a species also known as "grasshopper hawks" or "locust hawks" because that's their primary food -- were leaving Butte Valley National Grasslands as winter approached and for some reason they were not returning in the spring. Woodbridge heard about a lightweight satellite transmitter that could be fixed to a bird's feathers, to broadcast a signal about its whereabouts to a satellite. So he trapped two hawks and fastened the transmitters, each a little heavier than a silver dollar, to their tail feathers. In the fall of 1997, the hawks circled into the sky wearing the $3,000 instruments and headed due south, chasing summer. One of the hawks was never heard from again, but two months later the other beamed a signal from a region in Argentina called La Pampa, some 6,000 miles from California. It was the first time anyone knew where that species went for the winter -- an ornithological riddle until modern technologies came along.